Heterogeneous data analysis: Online learning for medical-image-based diagnosis

نویسندگان

  • Yuichi Motai
  • Nahian Alam Siddique
  • Hiroyuki Yoshida
چکیده

Heterogeneous Data Analysis (HDA) is proposed to address a learning problem of medical image databases of Computed Tomographic Colonography (CTC). The databases are generated from clinical CTC images using a Computer-aided Detection (CAD) system, the goal of which is to aid radiologists' interpretation of CTC images by providing highly accurate, machine-based detection of colonic polyps. We aim to achieve a high detection accuracy in CAD in a clinically realistic context, in which additional CTC cases of new patients are added regularly to an existing database. In this context, the CAD performance can be improved by exploiting the heterogeneity information that is brought into the database through the addition of diverse and disparate patient populations. In the HDA, several quantitative criteria of data compatibility are proposed for efficient management of these online images. After an initial supervised offline learning phase, the proposed online learning method decides whether the online data are heterogeneous or homogeneous. Our previously developed Principal Composite Kernel Feature Analysis (PC-KFA) is applied to the online data, managed with HDA, for iterative construction of a linear subspace of a high-dimensional feature space by maximizing the variance of the non-linearly transformed samples. The experimental results showed that significant improvements in the data compatibility were obtained when the online PC-KFA was used, based on an accuracy measure for long-term sequential online datasets. The computational time is reduced by more than 93% in online training compared with that of offline training.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cystoscopy Image Classication Using Deep Convolutional Neural Networks

In the past three decades, the use of smart methods in medical diagnostic systems has attractedthe attention of many researchers. However, no smart activity has been provided in the eld ofmedical image processing for diagnosis of bladder cancer through cystoscopy images despite the highprevalence in the world. In this paper, two well-known convolutional neural networks (CNNs) ...

متن کامل

Similarity measurement for describe user images in social media

Online social networks like Instagram are places for communication. Also, these media produce rich metadata which are useful for further analysis in many fields including health and cognitive science. Many researchers are using these metadata like hashtags, images, etc. to detect patterns of user activities. However, there are several serious ambiguities like how much reliable are these informa...

متن کامل

Medical school faculty Members and students Perceptions of Challenges to online learning during corona pandemic: Qualitative content analysis

Introduction: It is clear that The Covid-19 pandemic has disrupted an education system like other areas of society. The current research aimed to investigate faculty members' and medical students’ perceptions towards E-learning challenges during the Covid-19. Methods: This qualitative study was performed by purposive sampling among students (N=16) and faculty members (N=6) in Sabzevar Universit...

متن کامل

The Effect of Metacognition Instruction in Multimedia-based Learning Environments on Nursing Students’ Spiritual Health

Background: One of the main competencies required for enabling Nursing students to provide effective clinical care is spiritual health. The growth and development of nursing students’ spiritual health rely on strengthening their cognitive and metacognitive components. What is more associated with spirituality and spiritual health is students’ metacognition. This study aimed to investigate the e...

متن کامل

Cystoscopic Image Classification Based on Combining MLP and GA

In the past three decades, the use of smart methods in medical diagnostic systems has attracted the attention of many researchers. However, no smart activity has been provided in the field of medical image processing for diagnosis of bladder cancer through cystoscopy images despite the high prevalence in the world. In this paper, a multilayer neural network was applied to clas...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Pattern Recognition

دوره 63  شماره 

صفحات  -

تاریخ انتشار 2017